DIRECTIVAS

DIRECTIVA 2010/67/UE DA COMISSÃO

de 20 de Outubro de 2010

que altera a Directiva 2008/84/CE que estabelece os critérios de pureza específicos dos aditivos alimentares com excepção dos corantes e dos edulcorantes

(Texto relevante para efeitos do EEE)

A COMISSÃO EUROPEIA,

Tendo em conta o Tratado sobre o Funcionamento da União Europeia,

Tendo em conta o Regulamento (CE) n.º 1333/2008 do Parlamento Europeu e do Conselho, de 16 de Dezembro de 2008, relativo aos aditivos alimentares (¹), e, nomeadamente, o seu artigo 30.º, n.º 5,

Após consulta do Comité Científico da Alimentação Humana e da Autoridade Europeia para a Segurança dos Alimentos,

- Considerando o seguinte:
- (1) A Directiva 2008/84/CE da Comissão, de 27 de Agosto de 2008, que estabelece os critérios de pureza específicos dos aditivos alimentares com excepção dos corantes e dos edulcorantes (²), fixa os critérios de pureza aplicáveis aos aditivos referidos na Directiva 95/2/CE do Parlamento Europeu e do Conselho, de 20 de Fevereiro de 1995, relativa aos aditivos alimentares com excepção dos corantes e dos edulcorantes (³).
- (2) Em conformidade com o artigo 30.°, n.º 4, do Regulamento (CE) n.º 1333/2008, as especificações dos aditivos alimentares abrangidos pelos n.º 1 a 3 daquele artigo, incluindo os aditivos autorizados ao abrigo da Directiva 95/2/CE, são aprovadas nos termos do Regulamento (CE) n.º 1331/2008 do Parlamento Europeu e do Conselho, de 16 de Dezembro de 2008, que estabelece um procedimento de autorização comum aplicável a aditivos alimentares, enzimas alimentares e aromas alimentares (4), no momento em que esses aditivos são registados nos anexos respectivos em conformidade com os referidos números.
- (1) JO L 354 de 31.12.2008, p. 16.
- (2) JO L 253 de 20.9.2008, p. 1.
- (3) JO L 61 de 18.3.1995, p. 1.
- (4) JO L 354 de 31.12.2008, p. 1.

- (3) Uma vez que as listas ainda não foram elaboradas, e a fim de assegurar que a alteração dos anexos da Directiva 95/2/CE nos termos do artigo 31.º é efectiva e que os aditivos assim autorizados respeitam condições de utilização seguras, a Directiva 2008/84/CE deve ser alterada.
- (4) A entrada relativa ao dióxido de carbono (E 290) deve ser revista no que diz respeito ao teor em «óleo» a fim de ter em conta as especificações do *Codex Alimentarius* elaborado pelo Comité Misto de Peritos em Aditivos Alimentares (JECFA) e os documentos da Organização Internacional de Normalização (ISO) (por exemplo, ISO 6141).
- (5) A Autoridade Europeia para a Segurança dos Alimentos (a seguir designada «Autoridade») avaliou a informação sobre a segurança dos extractos de rosmaninho quando utilizados como antioxidante em géneros alimentícios. Os extractos de rosmaninho são derivados de Rosmarinus officinalis L. e contêm diversos compostos que exercem funções de antioxidantes (sobretudo ácidos fenólicos, flavonóides, diterpenóides e triterpenos). Considera-se adequado adoptar especificações para os extractos de rosmaninho autorizados como novo aditivo alimentar para utilização em géneros alimentícios ao abrigo da Directiva 95/2/CE, com o número E 392. Estão descritos vários tipos de processos de produção, designadamente por meio de extracção com solventes (etanólicos, acetona e hexano) e extracção supercrítica com dióxido de carbono.
- (6) A hemicelulose de soja (E 426) foi avaliada pelo Comité Científico da Alimentação Humana em 2003 (5) e está actualmente autorizada na UE ao abrigo da Directiva 95/2/CE. Actualmente, produz-se uma nova variedade de hemicelulose de soja que cumpre todas as especificações previstas na Directiva 2008/84/CE para o E 426, com a diferença de que o etanol é tecnologicamente necessário como precipitante para purificar a solução

⁽⁵⁾ Parecer do Comité Científico da Alimentação Humana sobre a hemicelulose de soja, emitido em 4 de Abril de 2003 (SCF/CS/ADD/EMU/185 Final).

de extracto dessa nova variedade de hemicelulose de soja. Consequentemente, o E 426 final, cujo aspecto difere de um produto pulverulento, de cor branca, seco por atomização, pode igualmente conter algum etanol como resíduo a uma concentração máxima de 2 %. O etanol é autorizado pela Directiva 2009/32/CE do Parlamento Europeu e do Conselho (1) como solvente de extracção durante a transformação de matérias-primas, géneros alimentícios, componentes alimentares ou ingredientes alimentares, em conformidade com boas práticas de fa-

- A Autoridade avaliou a informação sobre a segurança da goma de cássia como novo aditivo alimentar com acção de gelificante e espessante e emitiu o seu parecer em 26 de Setembro de 2006 (2). A Autoridade considerou que a utilização de goma de cássia tal como indicada nas condições especificadas não causava qualquer problema de segurança. Por conseguinte, é adequado adoptar especificações para este novo aditivo alimentar a que se atribuiu o número E 427.
- (8) A entrada relativa à hidroxipropilcelulose (E 463) deve ser alterada a fim de corrigir um erro nas especificações em relação à composição. Onde se lê «Percentagem de grupos hidroxipropoxil (-CH2CHOHCH3): mínimo 80,5 %», deve ler-se «Percentagem de grupos hidroxipropoxil (-OCH2CHOHCH3): máximo 80,5 %». Assim, é adequado actualizar as especificações actuais.
- A entrada relativa ao hidrogénio (E 949) deve ser corrigida de forma a que os níveis de concentração indicados nas secções relativas à composição e à pureza possam ser compatíveis. Consequentemente, a concentração de azoto deve ser corrigida.
- A Autoridade avaliou a informação sobre a segurança do novo aditivo alimentar poli(álcool vinílico) (PVA), como agente de revestimento pelicular para suplementos alimentares e emitiu o seu parecer em 5 de Dezembro de 2005 (3). A Autoridade considerou que a utilização de PVA não causava problemas de segurança no revestimento de suplementos alimentares apresentados sob a forma de cápsulas e comprimidos. Por conseguinte, é adequado adoptar especificações para o poli(álcool vinílico) a que se atribuiu o número E 1203 e que está autorizado como aditivo alimentar ao abrigo da Directiva 95/2/CE.
- A Autoridade avaliou a informação sobre a segurança de seis tipos de polietilenoglicóis (PEG 400, PEG 3000, PEG
- (1) JO L 141 de 6.6.2009, p. 3. (2) Parecer científico do Painel dos aditivos alimentares, aromatizantes, auxiliares tecnológicos e materiais em contacto com os géneros alimentícios, a pedido da Comissão, sobre a utilização de goma de cássia como aditivo alimentar, The EFSA Journal (2006) 389, 1-16.
- (3) Parecer científico do Painel dos aditivos alimentares, aromatizantes, auxiliares tecnológicos e materiais em contacto com os géneros alimentícios, a pedido da Comissão, sobre a utilização do poli(álcool vinílico) como agente de revestimento para suplementos alimentares, The EFSA Journal (2005) 294, p. 1.

- 3350, PEG 4000, PEG 6000, PEG 8000) como agentes de revestimento por película para utilização em suplementos alimentares e emitiu o seu parecer em 28 de Novembro de 2006 (4). A Autoridade considerou que a utilização desses tipos de polietilenoglicol como agente de revestimento em formulações formadoras de películas para suplementos alimentares sob a forma de comprimidos e cápsulas não causava problemas de segurança nas condições de utilização previstas. Atribuiu-se a todos estes tipos de polietilenoglicóis um novo número E 1521. Assim, é adequado adoptar especificações para esses seis tipos de polietilenoglicóis e agrupá-los numa única entrada. Consequentemente, é necessário actualizar as especificações actuais já estabelecidas na Directiva 2008/84/CE para o polietilenoglicol 6000.
- A AESA avaliou a segurança da utilização de uma pre-(12)paração enzimática à base de trombina com fibrinogénio derivada de bovinos e/ou suínos como aditivo alimentar para reconstituição de alimentos e concluiu, no seu parecer de 26 de Abril de 2005, que tal utilização da preparação enzimática quando produzida de acordo com o indicado no parecer não constitui qualquer problema de segurança (5). No entanto, o Parlamento Europeu, na sua Resolução de 19 de Maio de 2010, sobre o projecto de directiva da Comissão que altera os anexos da Directiva 95/2/CE do Parlamento Europeu e do Conselho relativa aos aditivos alimentares com excepção dos corantes e dos edulcorantes, considerou que a inclusão no anexo IV da Directiva 95/2/CE desta preparação enzimática como aditivo alimentar para reconstituição de alimentos não era compatível com a finalidade nem com o conteúdo do Regulamento (CE) n.º 1333/2008, pois não satisfaz os critérios gerais do artigo 6.º do Regulamento (CE) n.º 1333/2008, nomeadamente do artigo 6.º, n.º 1, alínea c).
- (13)É necessário ter em conta as especificações e técnicas de análise para os aditivos, tal como definidas no Codex Alimentarius, elaboradas pelo JECFA. Nomeadamente, sempre que adequado, os critérios de pureza específicos têm de ser adaptados por forma a reflectir os limites de determinados metais pesados que se revistam de interesse.
- A Directiva 2008/84/CE deve, por conseguinte, ser alte-(14)rada em conformidade.
- As medidas previstas na presente directiva estão em con-(15)formidade com o parecer do Comité Permanente da Cadeia Alimentar e da Saúde Animal e nem o Parlamento Europeu nem o Conselho se opuseram às mesmas,
- (4) Parecer científico do Painel dos aditivos alimentares, aromatizantes, auxiliares tecnológicos e materiais em contacto com os géneros alimentícios, a pedido da Comissão, sobre a utilização de polietilenoglicol (PEG) como agente de revestimento por película para utilização em suplementos alimentares, The EFSA Journal (2006) 414,
- (5) Parecer científico do Painel dos aditivos alimentares, aromatizantes, auxiliares tecnológicos e materiais em contacto com os géneros alimentícios, a pedido da Comissão, sobre a utilização de uma preparação enzimática à base de trombina com fibrinogénio derivada de bovinos e/ou suínos como aditivo alimentar para reconstituição de alimentos, The EFSA Journal (2005) 214, p. 1.

ADOPTOU A PRESENTE DIRECTIVA:

Artigo 1.º

O anexo I da Directiva 2008/84/CE é alterado nos termos do anexo da presente directiva.

Artigo 2.º

1. Os Estados-Membros devem pôr em vigor as disposições legislativas, regulamentares e administrativas necessárias para dar cumprimento à presente directiva até 31 de Março de 2011. Os Estados-Membros comunicam imediatamente à Comissão o texto das referidas disposições.

As disposições adoptadas pelos Estados-Membros devem fazer referência à presente directiva ou ser acompanhadas dessa referência aquando da sua publicação oficial. As modalidades dessa referência são adoptadas pelos Estados-Membros.

2. Os Estados-Membros comunicam à Comissão o texto das principais disposições de direito interno que adoptarem no domínio abrangido pela presente directiva.

Artigo 3.º

A presente directiva entra em vigor no vigésimo dia seguinte ao da sua publicação no Jornal Oficial da União Europeia.

Artigo 4.º

Os Estados-Membros são os destinatários da presente directiva.

Feito em Bruxelas, em 20 de Outubro de 2010.

Pela Comissão O Presidente José Manuel BARROSO

ANEXO

O anexo I da Directiva 2008/84/CE é alterado do seguinte modo:

1) Na secção relativa ao dióxido de carbono (E 290), a subentrada «Óleo» passa a ter a seguinte redacção:

«Óleo

Teor não superior a 5 mg/kg»

2) Após a secção relativa ao aditivo E 385, é inserida a seguinte secção relativa a extractos de rosmaninho (E 392):

«E 392 EXTRACTOS DE ROSMANINHO

ESPECIFICAÇÃO GERAL

Sinónimo Extracto de folha de rosmaninho (antioxidante)

Definição Os extractos de rosmaninho contêm vários componentes que se provou exercerem funções antioxidantes. Estes

> componentes pertencem principalmente às classes dos ácidos fenólicos, flavonóides e diterpenóides. Além dos compostos antioxidantes, os extractos podem igualmente conter triterpenos e matérias extractáveis por solventes orgânicos definidos especificamente na seguinte especifi-

cação

EINECS 283-291-9

Extracto de rosmaninho (Rosmarinus officinalis) Denominação química

O antioxidante de extracto da folha de rosmaninho é Descrição

preparado por extracção das folhas de Rosmarinus officinalis utilizando um sistema de solventes aprovado para alimentos. Os extractos podem depois ser desodorizados e descorados. Os extractos podem ser normalizados

Identificação

Compostos antioxidantes de referência: diterpenos fe-Ácido carnósico (C₂₀H₂₈O₄) e carnosol (C₂₀H₂₆O₄) (que inclui não menos de 90 % dos diterpenos fenólicos totais)

nólicos

Substâncias voláteis de referência principais Borneol, acetato de bornilo, cânfora, 1,8-cineol, verbe-

> 0,25 g/ml Densidade

Solubilidade Insolúvel em água

Pureza

< 5 % Perda por secagem

Arsénio Teor não superior a 3 mg/kg

Chumbo Teor não superior a 2 mg/kg

1. Extractos de rosmaninho produzidos a partir de folhas de rosmaninho secas por extracção com acetona

Descrição

Os extractos de rosmaninho são produzidos a partir de folhas de rosmaninho secas por extracção com acetona, filtragem, purificação e evaporação do solvente, seguidas de secagem e peneiração para se obter um pó fino ou um líquido

Identificação

Teor dos compostos antioxidantes de referência

≥10 % m/m, expresso como o total de ácido carnósico e carnosol

Rácio antioxidante/substâncias voláteis

(% m/m total de ácido carnósico e carnosol) ≥ 15 (% m/m das substâncias voláteis de referência principais) * (* em percentagem das substâncias voláteis totais no extracto, determinadas por cromatografia gasosa/espectrometria de massa "CG/EM")

Solventes residuais

Acetona: teor não superior a 500 mg/kg

2. Extractos de rosmaninho produzidos a partir de folhas de rosmaninho secas por extracção supercrítica com dióxido de carbono Extractos de rosmaninho produzidos a partir de folhas de rosmaninho secas por extracção supercrítica com dióxido de carbono com uma pequena quantidade de etanol como arrastador

Identificação

Teor dos compostos antioxidantes de referência

≥ 13 % m/m, expresso como o total de ácido carnósico e carnosol

Rácio antioxidante/substâncias voláteis

(% m/m total de ácido carnósico e carnosol) ≥ 15 (% m/m das substâncias voláteis de referência principais)* (* em percentagem das substâncias voláteis totais no extracto, determinadas por cromatografia gasosa/espectrometria de massa "CG/EM")

Solventes residuais

Etanol: teor não superior a 2 %

3. Extractos de rosmaninho produzidos a partir de um extracto etanólico de rosmaninho desodorizado

Extractos de rosmaninho produzidos a partir de um extracto etanólico de rosmaninho desodorizado. Os extractos podem ser mais purificados, nomeadamente por tratamento com carvão activado e/ou por destilação molecular. Os extractos podem ser suspensos em agentes de transporte adequados e aprovados ou ser secos por atomização

Identificação

Teor dos compostos antioxidantes de referência

≥ 5 % m/m, expresso como o total de ácido carnósico e carnosol

Rácio antioxidante / substâncias voláteis

(% m/m total de ácido carnósico e carnosol) ≥ 15 (% m/m das substâncias voláteis de referência principais)* (* em percentagem das substâncias voláteis totais no extracto, determinadas por cromatografia gasosa/espectrometria de massa "CG/EM")

Solventes residuais

Etanol: teor não superior a 500 mg/kg

4. Extractos de rosmaninho descorados e desodorizados obtidos por uma extracção em duas etapas utilizando hexano e etanol

Extractos de rosmaninho produzidos a partir de um extracto de rosmaninho etanólico desodorizado, extraído com hexano. O extracto pode ser mais purificado, nomeadamente por tratamento com carvão activado e/ou por destilação molecular. Podem ser suspensos em transportadores adequados e aprovados ou ser secos por atomização

Identificação

Teor dos compostos antioxidantes de referência

≥ 5 % m/m, expresso como o total de ácido carnósico e carnosol

Rácio antioxidante/substâncias voláteis

(% m/m total de ácido carnósico e carnosol) ≥ 15 (% m/m das substâncias voláteis de referência principais)* (* em percentagem das substâncias voláteis totais no extracto, determinadas por cromatografia gasosa/espectrometria de massa "CG/EM")

Solventes residuais

Hexano: teor não superior a 25 mg/kg Etanol: teor não superior a 500 mg/kg»

- 3) Na secção relativa à hemicelulose de soja (E 426):
 - a) As entradas «Definição» e «Descrição» passam a ter a seguinte redacção:

«Definição

A hemicelulose de soja é um polissacarídeo solúvel em água refinado proveniente de fibra de soja de variedade convencional por extracção com água quente. Não deve ser utilizado outro precipitante orgânico além do etanol

Descrição

Produto pulverulento fluido, de cor branca ou amarelada»

b) Na entrada «Pureza», é aditada a seguinte subentrada:

«Etanol

Teor não superior a 2 %»

4) Após a secção relativa ao aditivo E 426, é inserida a seguinte secção relativa à goma de cássia (E 427):

«E 427 GOMA DE CÁSSIA

Sinónimos

Definição

A goma de cássia é o endosperma moído purificado de sementes de Cassia tora e Cassia obtusifoli (Leguminosae), com menos de 0,05 % de Cassia occidentalis. Consiste essencialmente em polissacarídeos de elevada massa molecular constituídos sobretudo por uma cadeia linear de unidades de 1,4-β-D-manopiranose combinadas com unidades de 1,6-α-D-galactopiranose. O rácio manose - galactose é de cerca de 5:1

No processo de fabrico, as sementes são descascadas e élhes retirado o gérmen por meio de um tratamento térmico mecânico, seguido de moagem e selecção do endosperma. O endosperma moído é ainda purificado por extracção com isopropanol

Composição

Teor de galactomanano não inferior a 75 %

Descrição

Produto pulverulento inodoro amarelo claro ou esbranquiçado

Identificação

Solubilidade

Insolúvel em etanol. Dispersa-se bem em água fria, formando uma solução coloidal

Formação de gel com borato

A uma dispersão aquosa da amostra acrescentar uma quantidade suficiente de solução de ensaio (SE) de borato de sódio para elevar o pH para mais de 9; induz a formação de um gel

Formação de gel com goma xantana

Pesar 1,5 g da amostra e 1,5 g de goma xantana e misturar. Adicionar esta mistura (com agitação rápida) a 300 ml de água a 80 °C num copo de 400 ml. Agitar até a mistura estar dissolvida, e continuar a agitar durante mais 30 minutos após a dissolução (manter a temperatura acima de 60 °C durante o processo de agitação). Parar de agitar e deixar a mistura arrefecer à temperatura

Forma-se um gel firme e viscoelástico depois de a temperatura descer abaixo de 40 °C, mas este gel não se forma numa solução de controlo a 1 % só com goma de cássia ou goma xantana preparada de modo semelhante

ambiente durante, pelo menos, 2 h

Viscosidade Menos de 500 mPa.s (25 °C, 2h, solução a 1 %) correspondente a um peso molecular médio de 200 000-

-300 000 D

Pureza

Matérias insolúveis em meio ácido Teor não superior a 2,0 %

pH 5,5-8 (solução aquosa a 1 %)

Matéria gorda bruta Teor não superior a 1 %

Proteínas Teor não superior a 7 %

Cinza total Teor não superior a 1,2 %

Perda por secagem Não superior a 12 % (após secagem a 105 °C, durante

5 h)

Antraquinonas totais Teor não superior a 0,5 mg/kg (limite de detecção)

Solventes residuais Teor não superior a 750 mg/kg de álcool isopropílico

Chumbo Teor não superior a 1 mg/kg

Critérios microbiológicos

«Azoto

Contagem total em placa Contagem não superior a 5 000 unidades formadoras de

colónias por grama

Bolores e leveduras Contagem não superior a 100 unidades formadoras de

colónias por grama

Salmonella spp. Ausentes em 25 g

E. coli Ausente em 1 g»

5) Na secção relativa à hidroxipropilcelulose (E 463), a subentrada «Composição» passa a ter a seguinte redacção:

«Composição Percentagem de grupos hidroxipropoxil (-OCH₂CHOHCH₃): máximo 80,5 %, equivalente a um máximo de 4,6 grupos hidroxipropilo por unidade de anidroglucose, em relação ao produto anidro»

6) Na secção relativa ao «Hidrogénio (E 949)», na entrada «Pureza», a subentrada «Azoto» passa a ter a seguinte redacção:

Teor não superior a 0,07 % v/v»

Identificação

7) Após a secção relativa ao aditivo E 1201, é aditada a seguinte secção:

«E 1203 POLI(ÁLCOOL VINÍLICO)

Sinónimos Polímero de álcool vinílico, PVOH

Definição

O poli(álcool vinílico) é uma resina sintética preparada por meio de polimerização de acetato de vinilo, seguida de hidrólise parcial do éster na presença de um catalisa-

dor alcalino. As características físicas do produto dependem do grau de polimerização e do grau de hidrólise

Denominação química Etenol, homopolímero

Fórmula química $(C_2H_3OR)_n$ em que R = H ou $COCH_3$

Descrição Produto pulverulento granular inodoro, insípido, trans-

lúcido, de cor branca ou creme

Solubilidade Solúvel em água; moderadamente solúvel em etanol

Reacção de precipitação Dissolver, com aquecimento, 0,25 g da amostra em 5 ml

de água e deixar a solução arrefecer à temperatura ambiente. A adição de 10 ml de etanol a esta solução leva à formação de um precipitado branco, turvo ou floculento

Reacção corada

Dissolver, com aquecimento, 0,01 g da amostra em 100 ml de água e deixar a solução arrefecer à temperatura ambiente. Produz-se uma coloração azul ao acrescentar (a

5 ml de solução) uma gota de solução de ensaio (SE) de iodo e algumas gotas de solução de ácido bórico.

Dissolver, com aquecimento, 0,5 g da amostra em 10 ml de água e deixar a solução arrefecer à temperatura ambiente. Produz-se uma coloração vermelho-escura a azul depois de se acrescentar uma gota de SE de iodo a 5 ml

de solução

Viscosidade 4,8 a 5,8 mPa.s (solução a 4 % a 20 °C) correspondente a um peso molecular médio de 26 000-30 000 D

Pureza

Matérias insolúveis em água Teor não superior a 0,1 %

Índice de esterificação Entre 125 e 153 mg KOH/g

Grau de hidrólise 86,5 a 89,0 %

Índice de acidez Máximo 3,0

Solventes residuais Teor não superior a 1,0 % de metanol e a 1,0 % de

acetato de metilo

pH 5,0 a 6,5 (solução a 4 %)

Perda por secagem Máximo 5,0 % (após secagem a 105 °C durante 3 h)

Resíduo de incineração Máximo 1,0 %

Chumbo Teor não superior a 2,0 mg/kg»

8) A secção relativa ao «Polietilenoglicol 6000» passa a ter a seguinte redacção:

«E 1521 POLIETILENOGLICÓIS

Sinónimos	PEG, macrogol, óxido de polietileno

DefiniçãoPolímeros de adição de óxido de etileno e água designa-
dos geralmente por um número que corresponde aproxi-

madamente ao peso molecular

Denominação química alfa-Hidro-omega-hidroxipoli(oxi-1,2-etanodiol)

Fórmula química $HOCH_2 - (CH_2 - O - CH_2)_n - CH_2OH$

Peso molecular médio 380 a 9 000 D

Composição PEG 400: teor mínimo 95 %, teor máximo 105 %

PEG 3000: teor mínimo 90 %, teor máximo 110 %

PEG 3350: teor mínimo 90 %, teor máximo 110 %

PEG 4000: teor mínimo 90 %, teor máximo 110 %

PEG 6000: teor mínimo 90 %, teor máximo 110 %

PEG 8000: teor mínimo 87,5 %, teor máximo 112,5 %

Descrição PEG 400 é um líquido higroscópico, límpido, viscoso, incolor ou quase incolor

PEG 3000, PEG 3350, PEG 4000, PEG 6000 e PEG 8000 são sólidos brancos ou quase brancos de aparência cerosa ou parafínica

ou para

Identificação

Ponto de fusão PEG 400: 4-8 °C

PEG 3000: 50-56 °C

PEG 3350: 53-57 °C

PEG 4000: 53-59 °C

PEG 6000: 55-61 °C

PEG 8000: 55-62 °C

Viscosidade PEG 400: 105 a 130 mPa,s a 20 °C

PEG 3000: 75 a 100 mPa.s a 20 °C

PEG 3350: 83 a 120 mPa.s a 20 °C

PEG 4000: 110 a 170 mPa.s a 20 °C

PEG 6000: 200 a 270 mPa.s a 20 $^{\circ}\text{C}$

PEG 8000: 260 a 510 mPa.s a 20 °C

Para os polietilenoglicóis com um peso molecular médio superior a 400, a viscosidade é determinada numa solução a 50 % m/m da substância em causa em água

Solubilidade PEG 400 é miscível com água, muito solúvel em acetona,

em álcool e em cloreto de metileno, praticamente insolúvel em óleos gordos e em óleos minerais

PEG 3000 e PEG 3350: muito solúveis em água e em cloreto de metileno, ligeiramente solúveis em álcool, praticamente insolúveis em óleos gordos e em óleos minerais

PEG 4000, PEG 6000 e PEG 8000: muito solúveis em água e em cloreto de metileno, praticamente insolúveis em álcool, em óleos gordos e em óleos minerais

Pureza

Acidez ou alcalinidade Dissolver 5,0 g em 50 ml de água isenta de dióxido de

carbono e acrescentar 0,15 ml da solução de azul de bromotimol. A solução é amarela ou verde. Não é necessário mais de 0,1 ml de hidróxido de sódio 0,1 M para

mudar a cor do indicador para azul

Índice de hidroxilo PEG 400: 264-300

PEG 3000: 34-42

PEG 3350: 30-38

PEG 4000: 25-32

PEG 6000: 16-22

PEG 8000: 12-16

Cinza sulfatada Teor não superior a 0,2 %

1,4-Dioxano Teor não superior a 10 mg/kg

Óxido de etileno Teor não superior a 0,2 mg/kg

Etilenoglicol e dietilenoglicol Total não superior a 0,25 % m/m individualmente ou

combinados

Chumbo Teor não superior a 1 mg/kg»